
Testing and Verifying an IPv6 Based Multicast Network

Vilmos Bilicki
University of Szeged

Department of Software Engineering
6720 Szeged, Hungary

bilickiv@inf.u-szeged.hu

Abstract

Today we are witnessing the widespread
introduction of the Triple Play Service. The main
Television Broadcasting companies start, or plan to
start, their IPTV services. The current data network
infrastructure and the unicast communication
paradigm are not effective for providing such
services. The multicast data communication
paradigm is as old as the World Wide Web but,
even so, it has no wide acceptance or deployment.
With IPTV this situation may change. Due to the
small address space IPv4 cannot provide the
necessary support for multicast communication. It
may happen that multicast will be the main driving
force behind the widespread use of the IPv6
protocol.
With the IPv6 multicast network there will be many
new protocols and implementations. The testing of
these implementations is not easy without protocol
validation tools and, unfortunately, we were not
able to find a freely available framework on the net
for protocol validation.
Testing an already deployed network can provide
valuable information about future situations and
services. System administrators need a framework
that can also supply them with traffic orchestration
and measurement data. We were not able to find a
framework that was easy to use and would allow us
to create a distributed orchestrated testing
procedure for an arbitrary network with arbitrary
protocols.
These were some of the reasons for setting up our
NetSpotter project. Here we will show the
architecture and the services our framework
currently offers. Then we will also present our
measurements of the Linux IPv6 PIM-SM
implementation called MRD6.

1. Introduction

The number of users with broadband Internet access
is skyrocketing. According to estimates in [Rob05]
and [Eni05], the number of users with broadband
access in the U.S increased by 36% in 2004. Now
almost 70% of all U.S home users have broadband

connections. These users are a potential market for
new services. One typical service package is the
Triple Play service where the users get Internet
access, Voice over IP and IPTV services on a single
broadband connection. The IPTV service might
become the “Killer Application” or the next big hit
for widespread multicast usage. Here a large
number of users will be connected to the same
streaming channel and, in this case, the unicast data
transfer model will not be an effective and scalable
solution. Currently there are only a few applications
which utilise multicast support of the network.
These applications come mainly from the cluster or
grid world like: Jboss [JBoss], the BEA Weblogic
[Weblogic] cluster consistency provider framework
or other distributed applications like our LanStore
[Bil05] distributed storage.
It is well known that the IPv4 address space is a
valuable resource. This is true for the Class D
addresses as well. So it could happen that the Triple
Play solutions will become the driving force behind
IPv6. One of the most attractive features of the
IPv6-based networks is their multicasting
capability. Due to their large address space many
addressing solutions can be applied. The use of
scoped addresses is another potential area for
efficient traffic engineering.
With efficient bandwidth usage we also get some
challenges. In multicast routing a new approach
was needed for loop avoidance. The large number
of groups can be a critical issue as well. In contrast
with web and email traffic, the VoIP and the IPTV
services are sensitive to delay and jitter. The
network operators should audit their networks to
see how they can cope with the new challenges.
The frequent testing of a network may give
administrators some useful data and experience on
making preparations for special situations that may
arise.

2. Related work

A popular approach in network testing is one of
using traffic generators. There are many interesting
applications for traffic generation. But they are very
simple approaches or they are not maintained. One
of the best known freely available traffic generators
is the D-ITG[D-ITG] package, which supplies the

user with a distributed testing capability. In its
current state it is a miscellaneous collection of
utilities. The distributed control of the agents is
done with the help of a propriety protocol. The
agents listen in on a specified port for instructions.
One may write and implement software to control
them. It supports many protocols (CP, UDP, ICMP,
DNS, Telnet, VoIP (G.711, G.723, G.729, Voice
Activity Detection, and Compressed RTP)). One
advantage of this solution is the support of different
probabilistic distributions for modelling different
traffic scenarios. It also supports IPv6. The
software package is written in C++ and it has been
ported to both Linux and Windows. One can if one
wishes use a Java-based GUI for managing a single
agent. Compared to our approach where the user
has the freedom to construct arbitrary packets, this
one just has a fixed set of supported protocols. Our
approach provides a message sequence chart editor
where the user can specify arbitrary sequences and
the task of synchronising the participants is the duty
of the server In D-ITG the distributed testing
scenarios may be defined in configuration files
(without synchronisation) or they may be managed
from a remote controller, but currently there is no
tool comparable to our MSC editor for
orchestrating different distributed traffic situations.
We have not found any information about the
support for IPv6 multicast testing on the net. The
only suitable one we found was the software
package DBeacon[DBeacon]. It was the only one
available for this purpose. Although it is a very
useful tool, it lacks a number of important features
like membership testing and multipoint to
multipoint testing. One can manually create
arbitrary configuration files, but in this case the
system administrator should do the work. It may be
the best tool for a simple multicast network testing
procedure where we are not actually interested in
different traffic scenarios, but just want to know
whether the network works or not.

3. Our solution

Our goal was to design and implement a general
platform for network testing and protocol
validation. To achieve this goal we set the
following criteria for our framework:

• The user can define every bit of
information of the sent and received
packets.

• The user can define arbitrary sequences
from previously defined set of messages.

• The user can define arbitrary scheduling
for incoming and outgoing messages.

• The user can define a distributed scenario
where there are several traffic sources and
destinations arbitrarily located on the
network.

• The system should be easy to use (user
friendly).

• To reduce the burden of looking after a
distributed system, it should be managed
from one central point.

With this functionality we can not only test a
system but we can also validate and check the
conformance of different protocol implementations.

3.1 Architecture
To fulfil the above criteria we opted for a
centralised solution. As the reader will notice in the
picture there is a central server and an arbitrary
number of agents.

�������

���	
��

���

���

���

���

���

Figure 1.

The agents have their independent ability to execute
the scenarios defined by the central server. They are
the source and the destination of network traffic and
they may be the sampling points too. In the central
point of our framework there is a server where the
user can orchestrate different traffic scenarios. As
we may like to provide access to our system from
different locations, and which may be separated by
firewalls, we opted for a web based user interface.
Due of special user interface requirements we
implemented the interface as a Java Applet (Figure
2).

�
�
�
�
��
�
�
��

�
�
��
�
�

�
�
�

Figure 2.

In spite of the effectiveness of multicast
communication, we decided to use unicast
communication between the agents and the central
server because of its simplicity and firewall
friendliness. The agents may be placed on network
segments that are separated from the central server
by firewalls; hence we use web services as a
communication channel between the central server
and the agents. As we would like to test the
network it may happen that there is no connection
between the server and one or more agents. We

found a solution for this problem in the DBeacon
software package where there is no central point
and the whole system is built as a peer-to-peer
solution. Owing to its complexity and unpredictable
nature we later decided to reject this solution. To
overcome the network failure between the server
and the agent one can manually copy the scenario
file to the failing agent. We do not require special
purpose or dedicated machines for an Agent role.
As they may function as normal desktops due to
security constraints it is not a good idea if they act
as servers. So the communication is effectively one
way. The agents can access the central server but
the central server cannot initiate communication. To
ensure the manageability of the agents they are
connected to the central server by a given schedule.
The defining of this schedule is the duty of the
central server.
For some measurements, scheduling is critical.
Suppose, for instance, we would like to measure the
delay between the sending and the receiving of a
multicast RTP packet. As the clocks of the agent
machines may not have been synchronised
properly, we can not rely on them. But we can
provide two solutions for this problem. An offline
solution is one where the agent sends its local clock
value to the central server during the to-do list
download. The central server modifies the
scheduling based on the difference between its
clock and the agent’s clock. This solution can be
used in most situations, but when precise
scheduling is needed and different clock speeds are
not tolerated an online solution may be used. The
agents connect to a special scheduler method which
returns when all the agents have been connected
and the clock on the central server hits a given
value.
The central server could be a single point of failure,
but as we would like to use this system for the
continuous testing and monitoring of a network a
failure of the system cannot be tolerated. Hence we
designed and implemented a multilayer approach
whose diagram is shown in Figure 2. Both the
database layer and the business logic may be
clustered. The logic is implemented as EJB 3.0
session beans. Some of them just have a Web
Service interface for the agents and controlling
Applet. We used POJO’s to represent the data. The
persistence of these objects is handled by the
Application server.

3.2 Services

In this subsection we would like to describe the
services provided by our framework and the way
they were implemented by us.

3.2.1 Network handling

As the Java language is a high level language and
the development cycle is shorter than that for an
unmanaged environment, we implemented the
client in this environment. The biggest challenge
for us was raw network handling. The Java
platform provides only high level network handling
beginning with its capability for socket handling.
As we would like to give the user the chance to
define an arbitrary packet we extended the
capabilities of the Java platform with a new API to
handle raw network traffic. We implemented this
functionality in C++ and ported it to the Linux and
Windows platform. With this API one can send
MLDv2[RFC3810] packets from a Windows box
that does not have the capacity to handle MLDv2
packets, or one can send PIM-SM[PIM-SM] Hello
messages from a machine which is not a router. The
Java RTP stack can send IPv6 RTP packets only
with a unicast source and destination addresses that
have DNS entries. In some cases this is not
available. With our solution the user can define
RTP packets and handle them without relying on a
DNS service.

3.2.2 Agents

The agents are installed on different machines in
different parts the network, independently of the
number of firewalls between the agents and the
central server. The first task of the agent during the
start-up procedure is to register itself on the central
server. During this process the agent transfers all of
its special properties to the server like the number
of interfaces and the defined IP addresses. This data
is refreshed only when needed. The user may group
the agents and define specific properties for them
(e.g. message sequences).

3.2.4 Templates

The freedom to define arbitrary messages is not of
much value without an easy-to-use toolset. No one
will define a message sequence one bit a time and
calculate the checksums as well. Hence we
designed and implemented a powerful template
engine for this. The templates have the following
properties:

• Inheritance
• Composition
• Auto fields
• Alias handling

With the help of inheritance one can define
message families from less specific to the most
specific messages e.g. IPv6 packet, IPv6 packet
with UDP encapsulation, or an IPv6 packet with a
UDP or RTP encapsulation. With the help of
composition we can achieve the same results. With
these solutions one can define message libraries and
reuse them. And using auto fields one can define
the content of a field to be filled by the GUI. The

checksum is a good example where the user may
select the fields from which the checksum is
calculated. The user may define friendly aliases and
use them in the GUI instead of the long IPv6
addresses. Another example is when the user would
like to set up a large message sequence and the
difference between the preceding and subsequent
message field can be defined as a logical
expression. With these features a time consuming
test case setup may be less monotonous for the user
and be less error prone.

3.2.3 Sequence definition

To describe the message sequences we constructed
an easy-to-understand XML syntax based on the
ITU-T. Z.120 [Z120] message sequence chart
recommendation. We then selected the most
interesting subset of the functionality defined in
Z.120 for the implementation. With the help of the
GUI (shown in Figure 2) the user can define
sequences for an arbitrary number of agents. These
sequences are then stored in the database. When an
agent downloads its own sequence, the server
creates a customised sequence with synchronisation
and collects the messages from the general
sequence that are of interest to an agent. In this way
the user is able to create complex scenarios and the
agents will just receive the communication
sequences they are involved in.

3.2.5 Probabilistic functions

We applied several well known probabilistic
distributions that are used in telecommunication
and traffic modelling fields. One can define the
value of an auto field as an output of a probabilistic
function.

3.2.6 Reporting

The user can define the interesting properties to
measure during a test. This might be the measured
traffic parameters like delay, jitter or the difference
between the defined and the received message
sequence. The result might be the whole received
message sequence (without data). The results of a
measurement are transferred to the central server
after the measurement has been taken. On the server
side one can use the visualisation framework to
analyse the results.

Figure 4.

4. Measurements

For a system administrator to guarantee the
continuous operation of the managed network, a
good knowledge of the capabilities of the network
is needed. Our experience shows that a common
solution used by most administrators is to monitor
the network with the help of an SNMP based
software package. This solution may provide same
knowledge about the actual state of the network
but, it cannot provide much information about the
effects of planned or unplanned special events on
the network. For example whether the company has
decided to migrate the voice communication from
the POTS to a VoIP solution based on the current
network. Due to the undetermined nature of the
network traffic, the complexity of the network and
lack of detailed documentation about the
capabilities of networking devices, the analytic
approach for predicting the possible impact of the
new network traffic in most cases cannot be used. A
more popular and useable approach is to measure
the network in different scenarios. Currently there
are only basic devices available for this task. Most
traffic generators can only be used with fixed
configurations and as they intended to be desktop
applications they are not meant to be used as
distributed applications. The recommendations for
system testing are mostly based on stress tests. We
think that knowledge of the behaviour of the
managed network in an everyday situation could be
more important than during peak periods. In spite
of well known theoretical models for various types
of traffic we were not able to find any suggestions
about the kind of measurements we should make.

Figure 5.

4.1 IPv6 multicast measurements

Our original goal was to test the capabilities of the
Linux IPv6 multicast router especially the PIM-SM
implementation. The RFC 3918 [RFC3918]
describes the methodology of IPv4 multicast testing
and RFC 2432 [RFC2432] describes the
terminology used in this field. These documents
only specify a single source multiple receiver
testing scenario. The [IPv6benchmarking] draft
contains several additions to the benchmarking
methodology which can be interesting for IPv6
benchmarking. Below we will show our results for
IPv6 multicast group capacity and join delay in
different traffic scenarios and network topologies.

4.1 The configuration used

We set up a sample configuration shown in the
pictures 3 and 4 with Linux IPv6 PIM-SM [PIM-
SM] routers and Linux-based clients for them. The
machines had the following configuration:

• Software:
o Debian Sarge
o MRD6 0.9.5 PIM-SM

implementation [MRD6]
o Zebra Ripng as a unicast routing

algorithm
o Java 1.5_06

Table 1. contains the hardware specifications of the
machines.
 Processor Memory

(MByte)
Network card
(3Com
100MBit/s)

RP
(rendezvous)

P4 1300 MHz 512 2

RL P4 1300 MHz 512 4
RR Celeron 600

MHz
256 3

Agent1 P4 1300 MHz 512 1
Agent2 Celeron 600

MHz
256 1

Agent3 Celeron 600
MHz

256 1

Table 1.

4.2 The number of supported channels

 In the experiments our goal was to learn more
about the dependence between the number of
channels and the packet loss rate. Our tests were
done with an equal number of packets (50000). For
testing traffic we used an IPv6-based UDP packet
of variable length and fixed content. The only
varying parameter in the UDP was a serial value.
On the receiver side the received serials were the
result. Each MLDv2 packets contained 50 multicast
addresses with exclude directive.
We conducted the measurement for both topologies
(SUT and DUT, Figures 3,4). In both cases the
traffic source was Agent3 and the traffic destination
was Agent1. The number of received packets is
shown in the Table 2.

Table 2.
Evaluation:
The system worked well up to 100 channels. With
1000 the packet loss rate increased, but only to
about 2-10%. With a larger packet it was greater. If
we injected the same traffic several times the packet
loss rate decreased by 1-5%. We suppose the reason
for this behaviour can be found in the FIB
implementation. When we chose 10000 channels or
more the system could not cope with it. The RR
router processed about 4300 subscriptions and from
these subscriptions only 3150 were registered on
LR. We slowed down the subscription rate but the
best result we were able to achieve was that of
registering 5600 channels on RR and 2947 channels
on LR. It was surprising to us that the RR started
sending PIM-SM Join messages only after
processing the majority of the MLDv2 Register
messages, rather than in parallel. It seems that the
MLDv2 handling task has higher priority than the
PIM-SM signalling task. The multicast traffic for
10000 channels generated by Agent1 used about 60
MBit/s of bandwidth. Despite this low value the LR
was totally overloaded during PIM-SM Register
packet generation. From this experiment we may
conclude that this system is well able to handle
some 10-40 channels. Clearly the number of
channels handled by the routers strongly affects the
performance of a multicast network.
The DoS attack on a multicast network aided by a
large number of multicast channels can pose a real
threat. The real network traffic is not significant (in
the case of MLDv2 Join packets, several tens of
ICMPv6 packets), but the impact of this traffic
might be devastating. So we need safeguards.

N.Ch 64 512 1500
10 50000 50000 49200
100 49514 49664 43311
1000 46813 43808 41642
10000 n.a n.a n.a
60000 n.a n.a / n.a

4.3 The channel join delay

Here we measured the channel join delay for
different channel numbers. We measured the time
between the last MLDv2 packet and the first
arriving UDP packet in milliseconds. The results
that we obtained are listed below.

Table 3.
Evaluation:
It seems that the delay is proportional with the
number of channels. For larger packets the delay is
larger but the difference is not significant.

5. Conclusions and future work

In this article we presented our new network testing
and protocol validation framework. The strength of
this framework lies both in its user friendly GUI
and the support it provides for defining a network
traffic from top to bottom. However, the framework
is still incomplete. This was the reason why in our
testing scenarios we used and described only some
of its features. The first release of it is planned in
Q3 2006. As we mentioned earlier, the current
network testing scenarios are mostly concerned
with benchmarking. We think that measuring a real
network situation with a lot of agents can provide
the same or more valuable data than that obtained

from benchmarking. The probabilistic approach
where the traffic parameters are defined in terms of
known probabilistic functions will add new data to
the network testing field.
Here we did not evaluate the protocol validation
capability, but rather we measured the channel
handling capabilities. But we think that the protocol
validating capability should be widely used among
network protocol implementers. During the testing
phase it turned out that, based on RFCs, it is not a
trivial task to fully specify a packet in detail. Hence
we would like to define the most interesting
protocols for our framework and we plan to make
these sample configurations available on a
community site.
In our experiments it turned out that the multicast
network can be an easy target of a DoS attack. With
a relatively small packet number a multicast
network can be shut down.
The whole system was developed in the Java
language so it is portable. The software package is
available under a GNU GPL licence from
http://netspotter.sf.net.

6. Acknowledgement

I would like to thank David P. Curley for checking
this article from a linguistic point of view. I would
also like express my gratitude to Sándor Dojcsák,
Barnabás Tajti and Viktor Kertész for their creative
ideas and the meticulous work done while
implementing our new framework.

7. References
[Rob05] Rob McGann. Broadband: High Speed, High

Spend.
http://www.clickz.com/stats/sectors/broadband/article
.php/3463191, January 2005

[Min05] Miniwatts Marketing Group. INTERNET
USAGE STATISTICS - The Big Picture.
http://www.internetworldstats.com/stats.htm ,
December 2005

[JBoss] Burke B., Labourey S. Clustering with JBoss 3.0.
November 2002.
http://www.onjava.com/pub/a/onjava/2002/07/10/jbo
ss.html

[WebLogic] BEA. Using WebLogic Server Clusters.
2006.
http://edocs.bea.com/wls/docs81/cluster/overview.ht
ml

[Bil05] V. Bilicki. LanStore: a highly distributed reliable
file storage system, .NET Technologies’2005
conference proceedings, ISBN 80-86943-01-1, pp.
47-57, 2005

[D-ITG] Avallone S, Botta A., Emma D.,
Guadagno S, Pescap A. D-ITG V. 2.4 Manual. 2004.

http://www.grid.unina.it/software/ITG/codice/D
-ITG2.4-manual.pdf

[DBeacon] Santos H. dbeacon, a Multicast Beacon.
http://artemis.av.it.pt/~hsantos/dbeacon/

[RFC3810] Vida R., Costa L. Multicast Listener
Discovery Version 2 (MLDv2) for IPv6. 2004.
http://www.faqs.org/rfcs/rfc3810.html

[PIM-SM] Fenner B., Handley M., Holbrook H.

Kouvelas I. Protocol Independent Multicast - Sparse
Mode (PIM-SM): Protocol Specification (Revised).
2006. http://tools.ietf.org/wg/pim/draft-ietf-pim-sm-
v2-new/draft-ietf-pim-sm-v2-new-12.txt

[RFC3918] Stopp D., Hickman B., RFC 3918 -
Methodology for IP Multicast Benchmarking, 2004,
http://www.faqs.org/rfcs/rfc3918.html

[RFC2432] Dubray K., Terminology for IP Multicast
Benchmarking, 1998, http://rfc.net/rfc2432.html

[IPv6benchmarking] Popoviciu C., Hamza A., Velde G.,
Dugatkin D., Kine B., IPv6 Benchmarking
Methodology, 2006, http://www.ietf.org/internet-
drafts/draft-popoviciu-bmwg-ipv6benchmarking-
00.txt

[Z.120] ITU-T, Formal description techniques (FDT) –
Message Sequence Chart, 1990,
http://www.itu.int/ITU-
T/studygroups/com10/languages/Z.120_1199.pdf

[MRD6] Santos H., MRD6 - an IPv6 Multicast Router,
http://artemis.av.it.pt/~hsantos/dbeacon/

N.Ch 64 512 1500
10 17 23 14
100 227 254 319
1000 3800 3700 4200
10000 72777 >70000 >70000
60000 >70000 >70000 >70000

